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Abstract 

The dynamical aspects of solid-solid phase transformations are 
studied within the framework of the theory of thermoelasticity. A 
problem of the Riemann type for a one-dimensional bar undergoing 
an adiabatic process is analyzed. It is shown that by imposing a ki- 
netic relation and a nucleation criterion it is possible to single out a 
unique solution. This extends to the thermomechanical case results 
previously found in a purely mechanical context. 



1    Introduction. 

Solid-solid phase transitions can occur in materials by a change in stress 

or temperature. At a macroscopic level, within the framework of thermo- 

elasticity, materials that exist in different solid phases can be modeled by 

a nonconvex Helmholtz free energy density that depends smoothly on the 

deformation gradient and the temperature. At some fixed temperature, the 

Helmholtz potential exhibits multiple wells as a function of the deformation 

gradient. Each well is associated to a distinct solid phase. 

In a one-dimensional setting, ABEYARATNE & KNOWLES [4] analyzed an 

initial value problem of the Riemann type for a bar made of a special ther- 

moelastic material that can sustain multiple phases. It was found that the 

solution to the adiabatic Riemann problem, which involves initial data from 

two distinct phases, is not unique. Because of the nonconvexity of the the 

Helmholtz potential, the structure of the solution involves two types of dis- 

continuities, viz., shock waves and phase boundaries (see, e.g., ABEYARATNE 

& KNOWLES [l]-[4], SHEARER [7], SLEMROD [8], TRUSKINOVSKY [10]). The 

solution can be determined up to the phase boundary velocity. 

Based on the formalism of non-equilibrium thermodynamics (see, e.g., 

CALLEN [5], TRUESDELL [9]) and classical concepts used in materials science 

(see, e.g., CHRISTIAN [6]), ABEYARATNE & KNOWLES propose the existence 

of an additional piece of constitutive information, a kinetic relation, which 

applies at subsonic phase boundaries. The kinetic relation relates the phase 

boundary velocity to the driving traction, which is associated to a jump in en- 

tropy across the phase boundary. With this additional relation, it is possible 

to single out a unique solution for the Riemann problem (see ABEYARATNE 



& KNOWLES [l]-[4]). 

The purpose of the present analysis is to investigate, within the context 

of the adiabatic theory, the Riemann problem involving initial data from the 

same phase. The results are qualitatively different from those in [4] in the 

sense that, in order to recover uniqueness, a nucleation criterion has to be 

enforced. This nucleation criterion signals the onset of a phase change and 

generalizes, for the thermoelastic case, the results found in [3] in the context 

of a purely mechanical theory. 

In Section 2, the governing field equations and the corresponding jump 

conditions for an adiabatic process are obtained from balance principles. A 

particular thermoelastic material is introduced in Section 3. The field equa- 

tion and jump conditions are specialized for this material in Section 4. An 

initial value problem of the Riemann type for a one-dimensional bar is formu- 

lated in Section 5. It is found that there exist two different kinds of solutions. 

One kind involves no phase transition, whereas the other kind involves a two- 

parameter family of solutions containing two propagating phase boundaries 

(the phase boundary velocities acting as parameters). In the latter case, a 

kinetic relation is used to obtain the phase boundary velocities and hence 

the solution is fully determined. It is also found that for some range of the 

initial data, it is possible to have either kind of solution (i.e., with or without 

phase boundaries). Therefore, a nucleation criterion is enforced to single out 

the unique solution to the problem from the two different kinds. Finally, in 

Section 7, the connection between the Riemann problem with uniform data 

and the nucleation criterion is investigated. 



2    Preliminaries. 

Consider longitudinal motions of a bar with uniform cross section that oc- 

cupies the interval [—L,L] in an unstressed reference configuration during 

a time interval [*0i *i]- Assume that the referential mass density p is uni- 

form. Let (x, t) G [—L, L] x [to,ti] be a point in the reference configura- 

tion that is mapped to the position y(x,t) = x + u(x,t), where u is the 

displacement. It is assumed that u € C°([—L,L] x [to,^i]) and piecewise 

C2([—L, L] x [to, ti]). Let 7 = ux and v = ut be the strain and particle veloc- 

ity respectively (the subscript refers to partial differentiation). The restric- 

tion —1 < "f(x,t) ,Vx, t, guarantees that the deformation y(-,t) is invertible 

at each t. Let a be the stress, e the internal energy per unit referential mass 

and 77 the entropy per unit referential mass. Assume that a, e and rj are 

piecewise Cl([—L, L] x [to,*i])- The balance of linear momentum, balance 

of energy and the Clausius-Duhem inequality (dissipation inequality) for an 

adiabatic thermomechanical process in a one-dimensional bar are 

"E-i£ 
12 

pvdx , (1) 

«-i/X'+H*- (2) 
d   CX2 

T{t) = JtJ    ^dx^0' <3) 

V£ € [toj*i] and V[x!,x2] C [—L,L].   Here, T(t) is the entropy production 

rate in the interval [xi,x2]. Localization of the balance laws (l)-(3) at points 



where the fields are smooth provides 

ox = pvt , (4) 

1 
2 

(av)x = p(e + lv2)    , (5) 
t 

Vt>0. (6) 

The compatibility equation is 

vx = It ■ (7) 

Equation (5), with the use of (4), can be expressed as 

0"7t = ptt ■ (8) 

Suppose that there is a point x = s(t) in [x\, x2] at which some (or all) fields 

are discontinuous. Localization at x = s(t) of the global balances (l)-(3) and 

the compatibility equation (7) provide the corresponding jump conditions, 

viz., 

H + i[7]=0, (9) 

\<r]+ps[v]=Ot (10) 

[<rv]+ps[e + ±v2]=0, (11) 

Ms < 0 , (12) 



where s = ds/dt is the speed of propagation of the discontinuity and, for any 

function g, 

[g] = 9+ -9~ ,    9'  =   lim   g{x, t) ,    g+ =   lim   g(x, t) . 
x-+s(t)- x^s(t)+ 

Discontinuities are classified into two types, viz., classical shock waves and 

phase boundaries. Shock waves are related to discontinuities where the ma- 

terial on each side is in the same phase, whereas phase boundaries refer to 

discontinuities where different material phases exist on each side. In the adi- 

abatic theory, a shock wave whose Lagrangian velocity s is zero is referred 

to as a contact discontinuity (i.e., the material particles on each side of the 

discontinuity are the same at all times). Specific jump conditions in each 

case are given in Section 4. 

Let the Helmholtz potential be given by tp = ^(7,0). This potential is 

related to the internal energy through 

V> = e - 6n . (13) 

For a classical thermoelastic material, the stress a and the entropy r\ are 

given by 

a = ä(1,6) = p^(7,6), (14) 

77 = 77(7,0) = -M-r,o)- (is) 

The isothermal elastic modulus fi, the specific heat at constant strain c and 



the coefficient of thermal expansion a are defined by 

H = fid, 0) = a7(7,6) = pt/>77(7,0) , 

c = ct7,0) = %M) =-0<M7,0) , 
äö(7,0) ^(7,0) a = a(7,0) 

The isothermal sound speed is defined, when \i > 0, as 

a = 0(7,0) = '£(7,0) 

a7(7,0) ^77(7,0) \ 

(16) 

(17) 

Proper phase boundaries travel at subsonic velocities (see also TRUSKI- 

NOVSKY [10]). Using equations (13), (14) and (15) in equation (8) provides 

an alternative expression for the energy equation, i.e., 

Vt = 0. (18) 

It follows that the dissipation inequality (6) is trivially satisfied at regular 

points. The rate of entropy production for a segment [xi, x2] of the bar which 

contains a propagating discontinuity at x = s(t) can be expressed as 

T(t) = rb(t) + rs(t), (19) 

where 

Tb{t) = /    PVtdx , 
J X\ 

rs(t) = -pivjs. 

(20) 

(21) 



Here, Tt represents the bulk entropy production and Ts corresponds to the 

entropy production due to the moving discontinuity. Equations (18) and (20) 

imply that 

rb = 0 , (22) 

hence the entropy production for a thermoelastic material under an adiabatic 

process occurs solely because of the presence of a moving discontinuity. Based 

on this entropy production, define the driving traction as 

f = -p[vW)- (23) 

For a discussion of the notion of driving traction, see ABEYARATNE &; 

KNOWLES [1] and TRUSKINOVSKY [10]. The velocity jump can be elimi- 

nated from (11) by using equations (9) and (10), i.e., 

(PM-<*>[7])* = 0, (24) 

where, for any function g, 

b) = l(g++g-)   . 

From the energy jump condition (24), when s ^ 0, it follows that 

PW = (*)b] ■ 

Moreover, since [rtf] = {n){6] + [rj\(9), then (13), (23) and the above relation 



provide the following equivalent expression for the driving traction: 

f = pM-(cr)b] + p(v)lO]- (25) 

For a thermoelastic material, (14), (15) and (25) give 

f = p{M-(^)b]-We)M} • (26) 

In terms of the driving traction, the dissipation inequality (12) can be ex- 

pressed as 

fs > 0 . (27) 

The driving traction plays an important role in the kinetic relation and the 

nucleation criterion as explained in Section 6. 

3    Thermoelastic material. 

ABEYARATNE & KNOWLES [2] proposed an analytical model of a thermo- 

elastic material that can exist in different solid phases. The model is simple 

yet it incorporates the fundamental characteristics of a phase-changing mate- 

rial and allows to obtain results in specific problems. A phase diagram of this 

material in the 7,0-plane is shown in Figure 1. For temperatures below a crit- 

ical temperature dc, the material can exist in either a low strain phase Pi or 

a high strain phase P3. These phases are thermodynamically metastable and 

are separated by an unstable phase P2. Above the critical temperature the 



material can only exist in a stable phase P. Throughout this analysis, only 

transformations from or to the low and high strain phases are considered. 

Moreover, for a fixed temperature below the transformation temperature 8T, 

the absolute minimum of the Helmholtz potential corresponds to the high 

strain phase and for a fixed temperature between the transformation tem- 

perature and the critical temperature, the absolute minimum corresponds 

to the low strain phase. A thorough description of the thermomechanical 

characteristics of this material can be found in [2]. The boundaries between 

the different phases are given by 

1M{0)=1C + M{6-9C) , 

7m(ö) = ic + m(e-ec), 
(28) 

where 7c > 0, 6c > 0, M and m are constants.   The expression for the 

Helmholtz potential is given in each phase by 

^-^e-eT)-ceiog(lT)  in^ 

i>(-y,0) = { 
f(7-7r)2-^(7-7r)(0-0r) 2p p 

-c9\og(J-\+^-(6-6T) 

(29) 

inP3, 

where 7r is the transformation strain and Ay is the latent heat at the trans- 

formation temperature. The remaining parameters were defined in Section 3 

and are assumed constant. The expression in the unstable phase P2 is not rel- 

evant here. According to the model developed in [2], the material parameters 

10 



must satisfy the following restrictions: 

jT> (M - m)9c > 0 , 

M + m = 
_  2p\q 

pyrdi 
+ 2a . 

(30) 

The first restriction guarantees that there is no overlap between the two 

metastable phases in the 7,0-plane (hence, the stress is uniquely determined 

for a given temperature and strain). Restrictions (30)2,3 are related to the 

fact that the metastable phases and the unstable phase coincide at the critical 

point (7C)^c)- From (14) and (29), the stress response function is given by 

/X7 - an{6 - QT) in Pi, 

*M) = < (31) 

A*(7 _ 7r) - otn(0 - 6T)    in P3. 

Observe that, for a fixed temperature, the stress-strain relation is linear in 

each phase. Hence, this material will be referred to as the trilinear material. 

The entropy response function, from (15) and (29), is given by 

y7+clogUJ+c in Pi, 

77(7,0)= * 

—(7-7r) + clogl — 1+C-—    inP3 

(32) 

11 



It is convenient to introduce a set of nondimensional parameters for the 

trilinear material. Define the following parameters: 

(33) 

rp       c6 7       _       v 

s      . <     a27rM a27xm      , Ar 
v = -,    M = ,    m = ,    lT = —— 

a c c & IT 

The variable 8 might be viewed as a "normalized" strain. 

4    Field equations and jump conditions. 

Henceforth, for simplicity, the coefficient of thermal expansion is taken as 

zero. Consequently, the mechanical and thermal effects are decoupled in the 

differential equations. Nevertheless, a connection between the strain and the 

temperature remains in place via the jump conditions. For the thermoelastic 

material introduced in Section 3, at points where the fields are smooth, (4), 

(7) and (8) provide, with a = 0, 

It ~ vx = 0 , (34) 

vt ~ a27x = 0 , (35) 

et = 0. (36) 

The stress-strain relation, with a = 0, is shown in Figure 2. The jump 

conditions (9)-(12) at a point of discontinuity where both sides are on the 

same phase, when a = 0 and using the nondimensional quantities (33), are 

12 



given by 

[<S]v + [ü]=0, 

[S\ + [v]v = 0 , 

[T]v = 0 , 

log (^) v < 0 . 

These jump conditions are equivalent to either 

(37) 

<    v[ 

V    =    ±1, 

+ [v]    =   0, 

PI    =0, 
or 

[v]   = 

0, 

0, 

0. 

(38) 

The first case corresponds to a shock wave whereas the second is a contact 

discontinuity. Contact discontinuities are stationary in the reference config- 

uration (i.e., in the Lagrangian sense). If the high strain phase is on the right 

of the phase boundary, then the jump conditions (9)-(12), when a = 0 and 

in nondimensional form, are given by 

{ 

v[<5] + [v] = 0 , 

[8\-l + v[v] = 0, 

-(<*>-0-Jr}v = O, (39) 

13 



If the high strain phase is on the left of the phase boundary, then the jump 

conditions (9)-(12) are given by 

v[<*l + [v] = 0 , 

[<J] + H-v[o]=0, 

{logp-|}v,0.      j 

(40) 

5    Riemann problem. 

Consider the Riemann problem corresponding to an infinitely long bar com- 

posed of the thermoelastic material described in Section 3. This problem 

can be formulated as follows: Find functions 6(x,t), v(x,t) andT(x,t) such 

that equations (34)-(36) are satisfied at points where the functions are suffi- 

ciently smooth and the corresponding jump conditions (38)-(40) are satisfied 

at points where the functions are discontinuous, subject to the following initial 

conditions: 

6(x,0) , v(x,0) , T{x,0)  = 
b~L ,VL ,TL     for   —oo < x < 0 , 

SR ,VR ,TR    for   0 < x < oo . 
(41) 

14 



It is assumed that, initially, the bar is in the low strain phase, in which case 

SLe(-l,8M(TL)}, 

6Re{-l,6M{TR)]. 

The structure of the solution, as shown by ABEYARATNE &; KNOWLES [4], 

must necessarily involve either no phase boundaries (in which case all par- 

ticles of the bar remain in the original phase at all times) or two phase 

boundaries moving in opposite directions (in which case the particles jump 

to the high strain phase). In the latter case, as shown below, there is a 

two-parameter family of solutions. 

5.1    Solution with no phase boundary. 

The solution with no phase boundary involves two shock waves (traveling 

along x/at = ±1) and a contact discontinuity at x = 0. The bar remains 

in the low strain phase at all times. One seeks a self-similar solution of the 

form 

ÖL ,VL , TL     for   —oo < x < —at , 

S(x,t) , v(x,t) , T(x,t) = < 
6~o ,vo , TL     for   —at < x < 0 , 

So ,v0 ,TR     for   0<x <at , 
(42) 

ÖR ,VR ,TR    for   at < x < oo , 

where 50, v0 are the only unknowns. Notice that the continuity of T across 

the shock waves and the continuity of 6 and v across the contact discontinuity 

15 



were enforced. The solution is shown in Figure 3. Let 

and 

A=^+!*^ 

.     SR-5L     VR + VL 
3 2      +      2       ; 

then, from the jump condition (38) it follows that 

60 = h, (44) 

v0=j- 

It was assumed that the bar was initially in the low strain phase, then, for 

the whole bar to remain in the low strain phase at all times and from (42), it 

is required that — 1 < S0 < min [SM(TL),SM(TR)}. Hence, from (44), there is 

a solution of the form (42) to the Riemann problem if and only if the initial 

datum h is such that 

-1< h < min \6M(TL), SM(TR)] . (45) 

5.2    Solutions with two phase boundaries. 

The solution with two phase boundaries involves two shock waves (traveling 

along x/at = ±1), a contact discontinuity at x = 0 and two phase boundaries 

at x/at — v < 0 and x/at = v» > 0. One seeks a self-similar solution of the 

16 



form 

6(x,t) , v(x,t) , T(x,t) = < 

51 ,VL , TL for —oo < x < —at 

So ,vo , TL for —at < x < avt , 

Si ,vi , V for avt < x < 0 , 

Si , vi , T" for 0 < x < av*t , 

52 j ^2 > 2H for av*£ < a; < at , 

SR ,vR ,TR for at < x < oo , 

(46) 

where Jo, <$i, S2, w"o, ^i> w2, T" and T" are unknown. Notice that the continuity 

of T across the shock waves and the continuity of S and v across the contact 

discontinuity were enforced. Here, as in the previous section, the bar is 

initially in the low strain phase. The form of the solution is shown in Figure 4. 

From the jump conditions (38), (39)1,2 and (40)1,2, one has 

-(So ~ SL) + (wo -vL) = 0, 

v(<Ji - So) + (vi - v0) = 0 , 

v*(<52 ~ Si) + (v2 - vi) = 0 , 

(SR - S2) + (vR-v2) =0 , 

(Si - So - 1) + (vi - v0)v = 0 , 

(S2 - Si + 1) + (v2 - öi)v„ = 0 . 

17 



Solving this system provides 

So = h + - 
2 \l + v*      1 + v 

Si = h + -[ - + 
2 V 1 - v     1 + v» 

r L        l 

S2 = h + - 
1 

2 \l-v     1-vJ  ', 

(47) 

and 

vo = j + 

v1=j + 

1 
2 Vl + v* 
1 /    1 

i+vy ' 
i 

2 Vl + v» 
1 /    1 

V2 = 3 + Ö 

1-v/   ' 
1 

2 V 1 - v,      1-v 

(48) 

Moreover, using the jump conditions (39)3 and (40)3 together with (46) yields 

T' = ^(S1 + 60-1) + IT + TL, 

T" = ±(62 + 51-l) + lT + TR. 

Furthermore, using (47) in the above equations provides 

r' = TL + r(v,0, 

T" = TA + r»(v,0, 

(49) 

(50) 

18 



where 

2V1+V*     1-v2 ^
V

*) = ^-ö(TT^-T-3 )\ + b, (51) 

Notice that 

^v-» = {ft-UT^f-r^)}+;- <52> 

r*(-v*,-v) =r(v,v») 

It is important to remark that a solution of the form (46) is not unique. In 

fact, equations (47)-(52) represent a two-parameter family of solutions where 

the phase boundary velocities v and v* can be used as such parameters. The 

uniqueness issue is addressed in Section 6 with the postulation of a kinetic 

relation which singles out an appropriate pair (v, v») to fully determine the 

solution with two phase boundaries. A preliminary analysis regarding the 

existence of a solution is developed in the next section. 

5.3    Phase segregation conditions and entropy inequal- 

ity. 

Prom (45) it is clear that for suitable initial data there exists a solution to 

the Riemann problem with no phase boundary. The solution which involves 

two phase boundaries requires further analysis. One has to ensure that the 

solution satisfies the entropy inequalities (39)4 and (40)4 and that (S0,TL) £ 

19 



Plt (S1,T') € P3, (<Ji,T") € P3 and (<$2,TÄ) G Pu i.e., 

(53) 

<*1 > M^') , 

*i > 5m(T") , 

£o € (-I^M(TL)] , 

82e(-l,6M(TR)}, 

T'e(0,Tc), 

T"e{0,Tc). 

Conditions (53) are referred to as the phase segregation conditions. Prom 

(47), (49), (50), (51), and (28), it follows that the restrictions (53) and the 

entropy inequalities (39)4 and (40)4 are equivalent to 

#o(TL,v,v.) < (l-m)fc 

#iCrÄ,v,v,) < (l-m)fc 

H2(v,v*) < h 

H4(v,v,) < h 

H6{TL,v,v.) < h 

Hs(TR,v,v>) < h 

< H3(TL,v,>t.) , 

< H5(TR,v,v.), 

< jy7(7i,v,v.), 

< H9(TR,v,v.), 

(54) 

20 



where the functions Hi are defined for — 1 < v < 0, 0 < v, < 1 by 

H0(TL,v,v») = 5c + m(TL - Tc) - 1(1 - m) U±-- + —L_} 

H^TR, v, v,) = 5c + m(TR - Tc) - \(1 - m) j^ + —~| 

^3(TL, v, v,) = Sc + 1 + M(TL - Tc) + H2(y, v.) , 

#4(v,0 = l{-^— -J-1-1, 
2 [ 1 — v*     1-vJ 

^5(TÄ, v, v») = 5c + 1 + M(TH - Tc) + #4(v, v») , 

^(2i, v, v.) - {T, (e* - l) - Ir} + § {^ " ^J . 

H7(TL,v,v,) = {(Tc-TL)-lT}+1 

2 1 1 + v*     1 - v2 J ' 

H8(TR, v,v.) = {Tä (e* - l) - lT] + \ [^ - ^} , 

H9(TR, v, v») = {(Tc - TR) - lT} + \ {^ ~ J^} • 

21 



Notice the following symmetries: 

#2(v,v») = #4(-v»,-v) , 

#s(-,v,v,) = //5(-,-v*,-v) , 

■^6(-,v,v») = #8(-,-v„-v) , 

^7(-,V,V*) = i79(-,-V+)-v) . 

Equations (54) 1,2,3,4 are equivalent to (53) 1,2,3,4 respectively; the upper bounds 

in (54)5)6 are equivalent to the upper admissible value of the temperature in 

(53)5i6, whereas the lower bounds in (54)5)6 are equivalent to the entropy in- 

equalities (39)4 and (40)4 respectively. Notice that if the entropy inequalities 

are satisfied, then T" — Ti = r > 0 at the phase boundary x/at = v and 

T" — TR = r* > 0 at the phase boundary x/at = v». Thus, necessarily, the 

conditions V > 0 and T" > 0 are satisfied. 

The inequalities (54) determine, for fixed TL, TR, a region in the (v, v*, h)- 

space where it is possible to have a two-parameter family of solutions of the 

form (46). For simplicity, consider the case when IT = 0 which corresponds 

to twinning. Furthermore, since it was assumed that a = 0, then (30) and 

(33) give 

M = -m > 0 , Sc = 2> 
Sc > MTC . (55) 

22 



Under these assumptions, the functions Hi to H9 take the following form: 

H0(TL, v, v.) = M(TC - TL) - 1(1 + M) {^-L- + ^-L- - 1J 

Let 

M r  i + — 
2     1-v2 

M r  i  i 

H3(TL,v,v*) = 5 - M(TC - TL) + tf2(v,v,) , 

H5(TR, v, v.) = ? - M(TC - TR) + HA{v, v„) , 

^.vO-H^vO + f-i^}, 

H7(TL,s/,v*) = {Tc - TL} + ff6(v,v.) , 

i/8(v,v,) = H4(v,v») + ^-i|r^| , 

#9(rÄ, v, v,) = {Tc - TR} + H8{v, v») . 

fr    _       H0 fj    _       Hl 

1 + M '       x     1 + M 

Notice that 
ö   :f v2 . (MTC - 1/2) - MTL 

^6 > Ho lf V  > M(TC-TL)  • 

But, from (55)3, (MTC - 1/2) - MTL < 0, hence H6 > H0 for all v. A similar 

23 



analysis reveals that H8 > Hi for all v*. Moreover, one has 

H2   >   H4   if   v
2 < v2 , 

H6   >   H8   if   v
2 < v2, 

H2   >   H6   if   v
2 > c2, 

H4   >   H8   if   v
2 > c2 , 

where 

3 Ci = - 

The lower bound for h is given by 

for v2 > v2   Hmin = 

for v2 > v2   Hr, 

He for 0 < v2 < c\ , 

H2 for cj < v2 < 1 , 

ff8 for 0 < v2 < c2 , 

H4 for c2 < v2 < 1 . 

(56) 

Henceforth, for definiteness, it is assumed that 

TR>TL. (57) 

For the upper bound, one has to consider two cases for the given initial 

temperatures TL and TR. Only the first case is considered here: Assume the 

given temperatures TL and TR satisfy 

2(M + 1)(TÄ-TL)<1. (58) 

24 



Under this assumption, it follows that H7 < H3 and Ha < H5 for all v2 and 

v2. Moreover, 

' Ha   for   v2 < 1 - 
H^.{ ^-rj+i/d-vr     (69) 

*   fOT   »•>1-«fr» - Tl) +1/(1-«»)■ 

The lower and upper limits for /i in the v2,v2-plane corresponding to the 

phase segregation conditions are shown in Figure 5. Notice that Ha > Hg 

for any v2,v2, hence the admissible region is always non-empty. The values 

of v2,v2 for which Hmax > Hm\n correspond to the shaded region in Figure 6. 

Thus, the shaded region corresponds to the projection on the v2,v2-plane 

of the admissible region in the v2, v2, /i-space. Typical cross sections of this 

region in the v2,h and v2,/i-planes are shown at the end of next section in 

Figures 7 and 8. 

6    Driving traction, kinetic relation and nu- 

cleation criterion. 

As pointed out in Section 5.2, the solution involving two phase boundaries 

is not unique. The postulation of a kinetic relation at each phase boundary 

settles the uniqueness issue. In order to introduce the kinetic relation, the 

explicit form of the driving traction acting on each phase boundary is given 

below. 
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6.1    Driving traction for phase boundaries. 

For the thermoelastic material undergoing an adiabatic process, equation 

(26) at the phase boundary which has the high strain phase on its right 

becomes, with a = 0, 

{logF-s;} 
If the high strain phase is on the left of the phase boundary, then (26) 

becomes 

0+     cBT) ' 
/=pcW|log__^|. (61) 

Consider a dimensionless driving traction defined as 

f = -T- • (62) 

From (33), (60), (61), (49) and (50), the driving traction at the phase bound- 

ary x/at = v is 

f = -F[TL>r(v,v,)] , (63) 

and the driving traction at the phase boundary x/at = v* is 

U = F[TRMV,V*)\ , (64) 
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where 

*(r,r)-(T+r) {log (! + £)-£}, (65) 

and r, r* are given by (51)-(52). In the purely mechanical case, ABEYARATNE 

& KNOWLES [2] showed that, under certain assumptions, the corresponding 

Riemann problem was symmetric in the sense that v = — v* and f = —f* 

so that the problem reduces to a one-parameter family of solutions. The 

adiabatic Riemann problem does not exhibit such symmetry. One has to 

consider, separately, a kinetic relation for each propagating phase boundary. 

Nevertheless, one can easily check that the solution is symmetric when TL = 

TR. 

6.2    Kinetic relations. 

From (19), (21), (22) and (23), the dimensionless rate of entropy production 

for a segment of the bar containing a phase boundary during some time 

interval can be expressed by 

f = — r = T^r • (66) 
pac        {T} 

If, following [1] and [3], the quantity f/(T) is identified as an affinity and v 

as the corresponding flux, then the kinetic relation relates the affinity to the 

flux and, in this case, to the temperature on one side of the phase boundary. 

The temperature is not considered as an affinity (it describes the state of the 

material). Therefore, the relation between the affinity and the flux is of the 
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form 

(T)        n 

—L^-^CTL.V), (67) 

TR + r»/2 

Clearly, it is required that 

(69) 
Vl3 (.)V) = -<^3l(-,-V) 

•     v,    to satisfy some restrictions that arise upon enforce- 
The kinetic relation has to satisfy som 

lih,   GinCe r is non-negative, then <ptJ 
ment of the entropy inequality.  Since 

such that 
^(T,v)v>0. 

•     r     that if <p-  is differentiable with respect to v, then 
This implies that u tpt3 » u" 

,T{n_0     ^(T,0)>0. ^70) 

♦v, t ,„   is strictly monotonically increasing with v. 
Furthermore, assume that „ is strict y ^ 

Returning to the special case where lT - 0, from t 

(64) and (65), one has 

log 
A+J-^^-v),    ■og(l + ^)-^T-"-)i 
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therefore, 

r = TL(e¥'3l(Ti'-v)-l) ,    r, = TR (e*"<r"'v-> - l) 

Using (51) and (52) with ^ = 0 provides 

h+ \ (r^ ~ T^r-) = TL (e*3l(TL'"v) -!) . 2\l-v2    l + v* / v ' 

h + \ (--±-2 + -±-) = TR (c^m«.v.) -1) . 
2 \   1 - vj     1 — v/ v ' 

(71) 

(72) 

Consider the restriction of the function <£>3i(T, •) to non-negative values of its 

argument. Define 

^3i(T,v2) = ^3i(T,v)       forv>0. (73) 

Recall that the phase velocities are —v > 0 and v* > 0, hence, subtracting 

(72) from (71) and using (73) gives 

-^- + 2TR />i(T«,v2) _A= _^_ + 2TL (e^T^ - l)  . 
1 — v* \ /      1 — v' V / 

(74) 

Prom the properties of the kinetic relation (p3i, the function <^31 increases 

monotonically with v2. As a function of v2, (resp. v2), the left-hand side 

(right-hand side) of (74) is strictly monotonically increasing from 0 at v2 = 0 

(v2 = 0) to +00 at v2 = 1 (v2 = 1). Thus, there is a unique v2 € [0,1) for 

a given v2 € [0,1).  Therefore, it is possible to define a functional relation 
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between v2 and v2, say 

v2 = $(v2,rL,rÄ). (75) 

Notice that, since v < 0, then v = -\/$(vl,TL,TR). Henceforth, let 

V = y/$(vl,TL,TR) , 

VL = ^3i(TL,v
2) = <PZI{TLM<,TL,TR)) , 

VR = <P3I(TR,VI) ■ 

Adding (71) and (72) and using (73), (75) and the above notation, one has 

h = V(vl,TL,TR) 

2K '      2 v ;     2 i 1 - v2        1 - V2 J       (76) 
±, ±u 1 f 2v* - v2     2V - V21 

The function \t is strictly monotonically increasing in v2 from 0 at v2 = 0 to 

+oo at v2 = 1. Therefore, for a given h in the admissible range, (76) singles 

out a unique v2 which, by (75), provides a unique v2. This fully determines 

a unique solution of the form (46). 

The fact that a solution exists can be seen by the following analysis. The 
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lower bounds H6 and Hg, of the admissible region can be expressed as 

He(vl,TL,TR) = H6($(vl,TL,TR),vl) 

_ i r i + v - v2 i_i 
~2\    l-^2 1 + vJ ' 

H^lTL,TR) = tf8($(v2,TL,TÄ),v2) 

= i ri+v.-v2 i\ 
2\    1-V2 1 + V)   ' 

Notice that ^(v*,TL,TÄ) > ma^m[H6{vl,TL,TR),HB(vl,TL,TR)]. Moreover, 

the upper bound Hg is such that Hg = (Tc — TR) for V* = v = 0. Hence, 

by continuity, there exists a range of values of h in the admissible region for 

which max[H&, H$] < h = ^> < HQ, thus the existence of a solution of the 

form (46) is guaranteed. A complete analysis of solvability requires further 

knowledge of a specific kinetic relation. 

6.3    Nucleation criterion. 

As shown in Sections 5.1 and 5.2, there are two different kinds of solutions for 

the adiabatic Riemann problem. One can interpret the no-phase boundary 

solution as the limit of the two-phase boundary solution when v —> 0~ and 

v* —>• 0+. Now, if the initial datum satisfies (45), it is possible to have a 

solution with no phase boundaries of the form (42). Assuming that TR > TL 

and using (55)i, then (44) becomes 

-Kh<l--U{Tc-TL). (77) 
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On the other hand, the lower bound for h corresponding to the solution with 

two phase boundaries at v2 = v2 = 0 is Hmin(0,0) = 0 and the upper bound is 

Hmax(0,0) = (Tc — TR). Moreover, the curve defined by (76) passes through 

the origin, hence, if 

I_M(Tc-TL)<(rc-Tß) 

then there exists an overlapping range for the initial datum h for which it is 

possible to have either kind of solution: 

—1 < h <0 I No phase change solution, 
if ( -, then < 

0<h<--M(Tc-TL) { Both types of solutions. 

To select the appropriate solution, a nucleation criterion is required. Fol- 

lowing [2], assume there is a critical value fa(T) of the driving traction at 

which a transformation from low to high strain phase occurs. In this case, 

the critical value depends on the temperature of the corresponding low strain 

phase temperature. From (51), (52), (63), (64) and (65), nucleation occurs 

when 

|f| = F(TL,r(M,v,))=fcr(TL) (79) 

for the leftward moving phase boundary and 

f, = i^TWM.v.)) = UTR) (80) 
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for the rightward moving phase boundary. Although h is considered as fixed 

(initial conditions), the explicit dependence of r and r» on h is shown for 

clarity. Equations (79) and (80) define two surfaces on the v2,v2,/i-space. 

The intersection of the region where f > fCr(7i,) and |f*| > fcr(Tfl) corresponds 

to the region where nucleation occurs. Typical cross sections of this region 

are shown by the shaded area in Figures 7 and 8. 

7    Nucleation: nontrivial solution for uniform 

data. 

The importance of the Riemann problem with uniform initial data is related 

to its connection with the nucleation criterion. Since the bar is initially in 

the same phase and there are no discontinuities, the existence of a nontriv- 

ial solution (where two phase boundaries nucleate from an arbitrary point) 

could, in principle, provide a restriction on the critical value of the driving 

traction fcr. Suppose that the initial data of the Riemann problem of Sec- 

tion 5.2 is such that 5L = 5R = 8* and TL = TR = T». Since the system 

of equations (34)-(36) and the jump conditions (38)-(40) are homogeneous, 

then the problem admits a trivial solution 8(x, t) = 6* and T(x, t) = T* Vz, t. 

Nevertheless, there is also a nontrivial solution. Since TL = TR and in view 

of the properties of the kinetic relation ipij, equation (74) implies that 

v2 = vl     =$>    v = -v* . 
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Prom (47)-(52), there exists a one-parameter family of nontrivial solutions 

for the Riemann problem with uniform initial data of the following form 

(parametrized by v„): 

5* —oo < x < —at , 

^o —at < x < —av*i , 

5i —av»£ < x < av»£ , 

80 av*t < x < at , 

5» at < x < oo , 

and 

where 

S(x,t) = < 

T(x,t) = < 

T* —oo < x < —av*£ , 

T" —av*£ < x < av*t , 

T*    av*t < x < oo , 

60 = 5* - 

Ö! = 6* + 

v, 
1 - V2   '    ' 

1 

1 + vJ   ' 

r = 6.-l(*^)+T. 
2 V  1 - v2 

(81) 

(82) 

Notice that, in view of the analysis of Section 6.2, a solution of the form (81), 

(82) exists.   Using the notation of Section 6.2, it follows that V = v* and 
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VL = <PR = 
{P* = ^(^*)

V
*)- Equation (76), together with (43), becomes 

h = 5, = Tm (e*' - 1) + m) 
The nucleation criterion was introduced in terms of the driving traction 

which, in this case, can be written as 

f(T.,r{8„y/.))=[T.+ 
r(5*,v,y 

log   1 + 
r(£»,v»)' 

where 

r((J„v.) = <&.-£ 
2v, - vl 
l-v2 

In order to have an admissible solution, the phase segregation conditions and 

entropy inequality requirements have to be enforced. Prom Section 5.3, the 

lower bound for the value of h is given by 

•"min —  * 

HQ = H$ = - 

H2 = H4 = 

1 /2v,-v: 
2 V 1 - v 

v 
1-v? 

2 .  o<vi<ci, 

- 1 Cf < V2 < 1  . 

Recall that the functions He and H8 are related to the entropy inequality 

(39)4 and (40)4, whereas the functions H2 and H4 represent the restriction 

T' = T" < Tc- The upper bound for the admissible region is given by 

IT      _rr _ Tj _ 1 /^v.-viT 
-nmax - n7 - ii9 - - 

2 V  1 - v*  /   ' 

The admissible region is shown in Figure 9. From this, one can see that there 

is a minimum value for 5t below which no nucleation occurs (in this case, 
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£» = 0 at vjj; = 0). Observe that this lower bound is given by the entropy- 

inequality (it corresponds to f = 0). This analysis confirms the fact that 

nucleation occurs at a critical value such that fcrv* > 0 (as required by the 

entropy inequality) but fails to restrict the nucleation criterion in any other 

way. 
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Figure 1: Material phases in the temperature-strain plane. 
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Figure 2: Stress-strain relation for a = 0. 
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Figure 3: Solution with no phase boundary. 
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Figure 4: Solution with two phase boundaries. 
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Figure 5: Lower and upper admissible limits for the initial datum h on the 
v2,v^-plane. 
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Figure 6:  Projection of the admissible region from the v2,v^,/i-space onto 
the v2,v^-plane. 
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Figure 7: Admissible values of the inital datum h on the plane v2 = 0.2. 
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Figure 8: Admissible values of the inital datum h on the plane v^ = 0.2. 
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Figure 9: Admissible region for uniform data problem. 
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